\qquad
W-3205
Third Semester Examination 2021
M.Sc. (Mathematics)
Fuzzy Sets and their Application (I)
Paper - V

Very short answer type questions.(maximum 3 lines)
Q. 1 Define α-level sets?
Q. 2 If A and B are any two fuzzy numbers such that ${ }^{\alpha} \mathrm{A}=[2 \boldsymbol{\alpha}-1,3-2 \alpha]$ and ${ }^{\alpha} \mathrm{B}=[2 \alpha+1,5-2 \boldsymbol{\alpha}]$ then find $\boldsymbol{\alpha}(A-B)$
Q. 3 If R is a fuzzy partial ordering on a set X, then define the dominating class of x where $x \in X$.
Q. 4 Define necessity measure.

SECTION - B

Short answer type questions with maximum word limit 150.
Q. 5 Prove that the law of contradictions is violated for fuzzy sets?

OR

Define symmetric difference of fuzzy sets A and B of a universal set X and prove that $A \Delta(B \Delta C)=(A \Delta B) \Delta C$, where A, B and C are fuzzy sets on X.
Q. 6 Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{y}$ be an arbitrary crisp function. Prove that ${ }^{\alpha+}[f(A)]=f\left({ }^{\alpha+} A\right) \forall A \in F(X), \alpha \in[0,1]$

OR
Calculate $[-4,6] /[1,2]$
Q. 7 For a given relation $R\left(X_{1}, X_{2}, \ldots \ldots, X_{n}\right)$, define [$R \downarrow Y$] where $y=\left\{X_{j} \mid i \in J \subset\{1,2, \ldots, n\}\right.$

OR
Define composition of fuzzy relations ?
Q. 8 Plausibility measure are subadditive. Justify

OR
For every $A \in P(X)$, prove that
$\operatorname{Nec}(A)>0 \Rightarrow \operatorname{Pos}(A)=1$.

SECTION - C

Long answer type questions with maximum word limit 500.
$(4 \times 12=48)$
Q. 9 Prove that for all $a, b \in[0,1]$,

$$
\mathrm{i}_{\min }(\mathrm{a}, \mathrm{~b})<\mathrm{i}(\mathrm{a}, \mathrm{~b})<\min (\mathrm{a}, \mathrm{~b})
$$

Where $\mathrm{i}_{\text {min }}$ denotes the drastic intersection.
OR
Given an involutive fuzzy complement C and an increasing generator g of c , prove that t -norm and t -conorm generated by g are dual with respect to C .
Q. 10 Let A and B be fuzzy sets defined on the universal set $X=Z$ whose membership functions are given by

$$
A(x)=.5 /(-1)+1 / 0+.5 / 1+.3 / 2
$$

and $B(x)=.5 / 2+1 / 3+.5 / 4+.3 / 5$
Let a function $\mathrm{f}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ be defined for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathrm{X}$ by $\mathrm{f}\left(x_{1}, x_{2}\right)=x_{1} \cdot x_{2}$. Calculate $\mathrm{f}(\mathrm{A}, \mathrm{B})$.

If A and B are two fuzzy numbers defined as follows:
$\mathrm{A}(x)=\left\{\begin{array}{lll}0 & \text { for } & x<-1 \text { and } x>3 \\ (x+1) / 2 & \text { for } & -1<x<1 \\ (3-x) / 2 & \text { for } & 1<x<3\end{array}\right.$
and $B(x)=\left\{\begin{array}{lll}0 & \text { for } & x<1 \text { and } x>5 \\ (x-1) / 2 & \text { for } & 1<x<3 \\ (5-x) / 2 & \text { for } & 3<x<5,\end{array}\right.$
then find $(A / B)(x)$.
Q. 11 Explain min-max composition with suitable example.

OR
Explain fuzzy relation equation with suitable example.
Q. 12 Let a given finite body of evidence <f,m> be nested. Then prove that the associated belief and plausibility measures have the following properties for all $\mathrm{A}, \mathrm{B} \in \mathrm{P}(\mathrm{X})$:
(i) $\operatorname{Bel}(\mathrm{A} \cap \mathrm{B})=\min [\operatorname{Bel}(\mathrm{A}), \operatorname{Bel}(\mathrm{B})]$;
(ii) $\operatorname{Pl}(A \cup B)=\max [\operatorname{Bel}(A), \operatorname{Bel}(B)]$.

OR
Prove that a belief measure Bel on a finite power set $P(X)$ is a probability measure iff the associated basic probability assignment function m is given by

$$
\mathrm{m}(\{x\})=\operatorname{Bel}(\{x\}) \text { and } \mathrm{m}(\mathrm{~A})=0
$$

for all subsets of X that are not singletons.

|| || || || || ||

